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Abstract
Label noise is a natural event of data collection
and annotation and has been shown to have signif-
icant impact on the performance of deep learning
models regarding accuracy reduction and sample
complexity increase. This paper aims to develop
a novel theoretically sound Bayesian deep metric
learning that is robust against noisy labels. Our
proposed approach is inspired by a linear Bayesian
large margin nearest neighbor classification, and is
a combination of Bayesian learning, triplet loss-
based deep metric learning and variational infer-
ence frameworks. We theoretically show the ro-
bustness under label noise of our proposed method.
The experimental results on benchmark data sets
that contain both synthetic and realistic label noise
show a considerable improvement in the classifica-
tion accuracy of our method compared to the lin-
ear Bayesian metric learning and the point estimate
deep metric learning.

1 Introduction
Deep learning has been shown as a dominant learning frame-
work in various domains of machine learning and computer
vision. One of the major limitations of deep learning is that
it often requires relatively clean data sets that do not contain
label noise naturally caused by human labeling errors, mea-
surement errors, subjective biases and other issues [Ghosh
et al., 2017; Algan and Ulusoy, 2019]. The performance
of a machine learning method can be significantly affected
by noisy labels both in terms of the reduction in the accu-
racy rate and the increase in sample complexity. Particularly
for deep learning, a deep neural network (DNN) can general-
ize poorly when trained with noisy training sets which con-
tain high proportion of noisy labels since a DNN can over-
fit those noisy training data sets [Zhang and others, 2016;
Algan and Ulusoy, 2020]. Developing deep learning meth-
ods that can perform well on noisy training data is essential
since it can enable the use of deep models in many real-life
applications.

There have been several approaches proposed to handle
learning issues caused by label noise, for example: data
cleaning [Chu and others, 2016], label correction [Reed and

Figure 1: An overview of our Bayesian deep metric learning using
noisy labels. We learn the posterior of the model parameters, de-
noted by p(θ|z1, z2, ...), where each zi represents a triplet. In the
figure, the triplet anchor is at the centre (class labels are indicated
with color and geometric figure), and we show two triplets (z1, z2)
with clean labels and the triplet z3 with a noisy label for the anchor
(the anchor should be labelled with Class 2 instead of Class 1). Our
proposed training algorithm provides an upper-bound (defined in the
bottom row) to the model posterior trained with noisy triplets.

others, 2014], additional linear correction layers [Sukhbaatar
and others, 2014], dimensionality-driven learning [Ma and
others, 2018], bootstrapping [Reed and others, 2014], cur-
riculum learning-model based approach such as Mentor-
Net [Jiang and others, 2018] or CoTeaching [Han and oth-
ers, 2018], loss correction (or noise-tolerant loss) [Ghosh
et al., 2017; Zhang and Sabuncu, 2018; Ma et al., 2020],
or a combination of the techniques above [Li et al., 2020;
Nguyen and others, 2019]. Relevant to this paper is an ex-
isting theoretically sound approach: Bayesian large margin
nearest neighbor classification (BLMNN) [Wang and Tan,
2018] that employs Bayesian inference to improve the ro-
bustness of a point estimation-based linear metric learning
method. BLMNN then introduces a method to approximate
the posterior distribution of the underlying distance parameter
given the triplet data by using the stochastic variational infer-
ence. More importantly, BLMNN [Wang and Tan, 2018] also
provides a theoretical guarantee about the robustness of the
method, which says that it can work with non-uniform label
noise. Although BLMNN has been mathematically shown to
be robust against label noise, it only focuses on a simple lin-
ear Mahalanobis distance that can not capture the nonlinear
relationships of data points in deep metric learning [Lu et al.,
2017].



In this paper, we introduce a Bayesian deep metric learning
framework that is robust against noisy labels. Our proposed
method (depicted in Fig. 1) is inspired by the BLMNN [Wang
and Tan, 2018], deep metric learning [Hoffer and Ailon,
2015; Lu et al., 2017], and Bayes by Backprop [Blundell and
others, 2015]. Compared to the BLMNN that only considers
a linear metric learning, our framework can handle non-linear
deep metric learning, which is useful for many real-life appli-
cations. Moreover, directly applying the variational Bayes
learning [Wang and Tan, 2018] in deep learning is challeng-
ing since it requires sampling from a distribution of the neu-
ral network parameters. Instead, we adapt the variational in-
ference by Blundell et al. [2015], which allows to efficiently
sample the parameters of a Bayes neural networks by using a
backpropagation-compatible algorithm. We also theoretically
show the robustness of our proposed method when working
with label noise. The experimental results on several noisy
data sets show that our novel proposed method can generalize
better compared to the linear BLMNN [Wang and Tan, 2018]
and the point estimation-based deep metric learning [Lu et
al., 2017], especially when the noise level increases.

It is important to emphasize that the motivation of our
method is to produce a better calibrated model that is more
robust to noisy label training, and, as a result, less likely
to overfit the training set than the linear BLMNN [Wang
and Tan, 2018] and the point estimation-based deep metric
learning [Lu et al., 2017]. Therefore this is a paper that
introduces a new theoretical framework to solve noisy la-
bel learning instead of presenting method that is competi-
tive against the best approaches of the field (such as Men-
tornet [Jiang and others, 2018] or Co-teaching [Han and
others, 2018]) in large-scale datasets (e.g., webvision [Li
et al., 2017] and Clothing 1M [Xiao et al., 2015]). Fur-
thermore, deep metric learning has been in fact considered
in the Bayesian settings before [Karaletsos et al., 2015;
Ishfaq and others, 2018], and recently, in [Lin and others,
2018], but not in the context of noisy labels. Consequently,
our proposed framework can be used by other methods that
can deal with noisy label learning, but the extension of those
methods using our proposed approach is out of the scope of
this paper.

2 Related Work
2.1 Point Estimation-Based Distance Metric

Learning
The goal of distance metric learning (or metric learning) is
to learn a distance function to measure the similarity be-
tween training samples. Metric learning has been shown to
have great success in many visual applications such as face
recognition, image classification, visual search, visual track-
ing, and person re-identification [Lu et al., 2017]. In prin-
ciple, a supervised metric learning method aims to learn a
distance metric which pulls together samples from the same
class while pushing away those from different classes. Based
on the complexity of the distance, metric learning can be clas-
sified into two types: linear, focusing on linear distance (e.g.,
Mahalanobis), which often suffers from the nonlinear rela-
tionship of data points [Lu et al., 2017]; and non-linear, which

nowadays is mostly based on deep learning.
Deep metric learning (DML) is motivated by the fact that

deep learning is an effective solution to a non-linear trans-
formation of input samples [Lu et al., 2017]. The key idea
of DML is to explicitly learn a set of hierarchical non-linear
transformations to map input data points into a feature space
that is used for comparing or matching these data points
in a more effective manner. DML unifies feature learning
and metric learning into a joint learning framework. DML
is shown to be more advantageous compared to traditional
models, for example, with respect to classification perfor-
mance [Lu et al., 2017]. Relevant to this paper is the triplet
loss-based metric learning [Lu et al., 2017], in which the orig-
inal training data set is represented by a set of independent
triplets, formed by an anchor sample, one sample of the same
class and another sample from a different class. The train-
ing process is then performed by minimizing the triplet loss
to simultaneously approximate the anchor to the sample with
the same class and separate the anchor from the sample of
different class.

2.2 Robust Linear Distance Metric Learning via
Bayesian Inference

One drawback of the point estimation DML is that it is
likely to over-fit the noisy labels [Wang and Tan, 2014;
Wang and Tan, 2018]. Wang et al. [2016] introduces the
Deep Stochastic Neighbor Compression (DSNC) method that
aims to jointly learn a nonlinear transformation that pre-
serves the neighborhood of the data, and a compressed ver-
sion of the training data set. DSNC is also robust against
label noise. Motivated by the fact that Bayesian learning is
a good choice for robust learning [Zhu et al., 2014], Wang
and Tan [2018] introduced the theoretically sound Bayesian
large margin nearest neighbor classification (BLMNN) to im-
prove the robustness of the linear metric learning under the
presence of label noise. The BLMNN framework represents
the large margin nearest neighbor classification using a linear
metric learning in the form of a variational Bayes method that
takes the prior distribution of the transformation matrix into
account and estimate the posterior distribution via stochastic
variational inference (SVI). BLMNN provides mathematical
definitions of the noisy label triplet (a type of non-uniform
label noise) and the β-robust algorithm against noisy label
triplets. More importantly, a theoretically guarantee of the
robustness of BLMNN is also provided in [Wang and Tan,
2018]. Although BLMNN efficiently addresses the train-
ing issue caused by the noisy label, one key limitation of
BLMNN is that it is based on a linear metric transformation
that cannot capture the nonlinear relationships of data points
in deep metric learning. However, the extension of BLMNN
to the non-linear case is not straightforward due to the com-
plexity of the posterior distribution estimation as well as the
sampling process of high-dimensional parameters, and such
extension is the main target of our paper.

2.3 Bayes by Backprop
Bayesian neural networks [Neal, 2012; Gal and Ghahramani,
2015] aim to estimate the posterior distribution of the network
parameters given the training data. However, that inference
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framework is often intractable, especially when working with
high dimensional parameters [Blundell and others, 2015].
Moreover, exactly calculating the posterior of the weights is
challenging since it requires the integration that is known to
be computationally expensive. Blundell et al. [2015] intro-
duced the “backpropagation-compatible” Bayes by Backprop
method for estimating the posterior distribution of the net-
work parameter. That method is inspired by the variational
free energy inference in which the exact posterior is approxi-
mated by a variational distribution by solving an optimization
problem. In principle, Bayes by Backprop can directly work
on the network parameter by minimizing a compression cost
function [Blundell and others, 2015].

Our proposed method is inspired by [Wang and Tan, 2018],
where we replace the linear Mahalanobis metric by a non-
linear deep metric. Our novel proposed method therefore
leverages the good performance of the deep metric learn-
ing [Lu et al., 2017] and the robustness to label noise of a
Bayesian framework [Wang and Tan, 2018]. We first repre-
sent a triplet-based deep metric learning using Bayesian infer-
ence. By replacing the softmax loss by a triplet loss (and so
learning a metric), we impose more strict constraints, where
points of the same class are forced to collapse into a small re-
gion of the feature space instead of just belonging to regions
within the class boundaries. We argue that this more strict
constraints has the potential to introduce more robust feature
spaces for classification under noisy label training. To ap-
proximate the posterior of the network parameters, we then
employ the efficient variational framework [Blundell and oth-
ers, 2015] that allows to sample from a Bayesian neural net-
work using the backpropagation framework. We theoretically
show that our proposed method is robust against noisy triplet
relying on a Bayesian inference framework.

3 Methodology
In this section, we explain our proposed method. Then, we
theoretically show the robustness of that method under noisy
label triplet.

3.1 Deep metric learning with triplet loss
Let us denote the original data set by T = {(xi, yi)}Ni=1,
where xi ∈ RD is a sample and yi ∈ Y ⊂ N is its correspond-
ing label. Let S = {(i, j)|(xi, yi), (xj , yj) ∈ T and yi =
yj} and D = {(i, j)|(xi, yi), (xj , yj) ∈ T and yi 6= yj} de-
note the set of pairs of the data points with the same labels and
the set of pairs with different labels, then a triplet is defined by
z = (i, j, l), where (i, j) ∈ S, and (i, l) ∈ D. A triplet-based
deep metric learning framework [Hoffer and Ailon, 2015;
Lu et al., 2017] aims to minimize the following triplet loss
function for the triplet z = (i, j, l),

L(i,j,l)
tri (θ) = h(τ + d2f (xi,xj)− d2f (xi,xl)), (1)

where the deep metric is defined by
d2f (xi,xj) = ‖f(xi, θ)− f(xj , θ)‖22, (2)

with f(·, θ) denoting the network function parameterized by
θ, and h(a) = max(0, a), a ∈ R representing the hinge loss
function (with τ > 0 being a margin between df (xi,xj) and
df (xi,xl)).

3.2 Bayesian Deep Metric Learning
Let us denote the training data set by Z = {zk}k=1,...,|Z|,
which contains independent triplets z = (i, j, l) and the net-
work parameter by θ ∈ RP . According to the large mar-
gin principle [Wang and Tan, 2018], the likelihood function
p(Z|θ) can be defined as follows:

p(Z|θ) =
∏

(i,j,l)∈Z

p(xi,xj ,xl, yi, yj , yl|θ)

= C
∏

(i,j,l)∈Z

exp(−2 ·max(1 + d2f (xi,xj)− d2f (xi,xl), 0)),

(3)

where C is a normalising constant. Without loss of gen-
erality, we assume that the prior of the network parameter
is a Gaussian with mean µ0 and covariance matrix V0, i.e,
p(θ) = N (θ|µ0,V0). By using the Bayes’ rule, the posterior
distribution of the parameter θ can be represented by

p(θ|Z) ∝ p(Z|θ)× p(θ). (4)

Naively estimating the posterior in (4) is often intractable,
especially for the high dimensional parameter space of deep
models. Hence, we employ the variational learning ap-
proach [Blundell and others, 2015] to approximate the pos-
terior distribution in (4). In particular, the goal of that vari-
ational method is to estimate the variational parameter λ of
a distribution for the network parameters, denoted by q(θ|λ)
that minimizes the Kullback-Leiber (KL) divergence between
the variational distribution and the true posterior, i.e.,

λ∗ = argmin
λ

KL(q(θ|λ)‖p(θ|Z))

= argmin
λ

KL(q(θ|λ)‖p(θ))− Eq(θ|λ){log p(Z|θ)}.
(5)

The objective function in (5) embodies a trade-off between
the complexity of the data and the simplicity of the prior.
Blundell et al. [2015] pointed out that directly evaluating that
cost function is computationally expensive [Blundell and oth-
ers, 2015], so they introduced an unbiased Monte-Carlo ap-
proximation of the exact cost function in (5) with the follow-
ing function:

F(Z, θ) ≈
n∑
i=1

log q(θ(i)|λ)− log(p(θ(i)))− log p(Z|θ(i)),

(6)

where θ(i) ∼ q(θ|λ) is the i-th Monte Carlo sample of the
variational posterior distribution assumed to be a diagonal
Gaussian distribution, i.e., θ ∼ N (µ, σ2I), where I is the
identity matrix, then a sample of the weights θ can be ob-
tained by

θ ∼ µ+ log(1 + exp(ρ)) ◦ ε, (7)

where σ = log(1 + exp ρ), the variational posterior param-
eters are λ = (µ, ρ) , with µ ∈ RP and ρ ∈ R, ◦ denoting
point-wise multiplication, and ε ∼ N (0, I). The variational



Algorithm 1 Bayesian Deep Metric Learning (BDML)

Establish the triplet training set Z
Initialize the variational parameter λ = (µ, ρ)
repeat

Sample ε ∼ N (0, I)
Compute θ with (7)
Compute the likelihood p(Z|θ) with (3)
Compute function h(θ, λ) with (9)
Update µ, ρ with (8)

until convergence

parameters λ = (µ, ρ) are updated by [Blundell and others,
2015]:

µ ← µ− α∇µh(θ, λ)
ρ ← ρ− α∇ρh(θ, λ), (8)

where α is the step size, and

h(θ, λ) = log q(θ|λ)− log p(θ)p(Z|θ). (9)

The gradients in (8) can be estimated as follows [Blundell and
others, 2015]:

∇µh(θ, λ) =
∂h(θ, λ)

∂θ
+
∂h(θ, λ)

∂µ
, (10)

∇ρh(θ, λ) =
∂h(θ, λ)

∂θ

ε

1 + exp(−ρ)
+
∂h(θ, λ)

∂ρ
.(11)

The whole training process of our proposed method is pre-
sented in Algorithm 1.

3.3 Robustness to Label Noise
This subsection first introduces the definition of a noisy label
triplet and the robustness of a learning algorithm under that
label noise. We then theoretically show the robustness of our
proposed method against noisy labels.
Definition 1. A triplet z = (i, j, l) of data points is de-
fined as a label noisy triplet [Wang and Tan, 2018] if: 1)
xj ,xl ∈ Ni–the set of neighbors [Weinberger and Saul,
2009] of xi, where Ni = {x ∈ RD : ‖x − xi‖ ≤ δ}, with
δ > 0 being sufficiently small; 2) yij(1 − yil) = 1, where

yij =

{
1, if yi = yj
0, otherwwise

; and

3) d2f (xi,xj) − d2f (xi,xl) ≥ Cd, with Cd > 0 denoting a
threshold.
Definition 2. Let Z be an arbitrary training set and z′ a label
noisy triplet. Then a learning algorithmA is β-robust against
label noise in the Bayesian inference sense if

| log p(θ|Z, z′)− log p(θ|Z)| ≤ β. (12)

Lemma 1. Let Z be an arbitrary training set (in the sense
that it may or may not contain any noisy label triplet). As-
suming that z′ = (i, j, l) is a noisy label triplet with the cor-
responding threshold Cd in Definition 1, and the normalising
constant of the likelihood p(Z|θ),C is defined in (3) such that
C ≤ exp (2(Cd + 1)). Then

| log p(Z, z′|θ)− log p(Z|θ)| ≤ 2(Cd + 1)− logC. (13)

Proof. Suppose that p(θ) 6= 0. Given the i.i.d. assumption
from (3) we have

p(Z, z′|θ) = p(Z|, θ)× p(z′|θ). (14)

Thus

log p(Z, z′|θ) = log p(Z|θ) + log p(z′|θ). (15)

Note that 0 < p(z′|θ) ≤ 1, we have log p(z′|θ) ≤ 0, and then

| log p(Z, z′|θ)− log p(Z|θ)| = − log p(z′|θ). (16)

Since z′ = (i, j, l) is a noisy label triplet (Definition 1), we
obtain

1 + d2f (xi,xj)− d2f (xi,xl) ≥ 1 + Cd > 0, (17)

then, by combining with the corresponding likelihood in (3),
we obtain

− log p(z′|θ) ≤ − logC + log(exp(2(1 + Cd)))

≤ 2(Cd + 1)− logC. (18)

The resutl in equation 13 is obtained by integrating (18) into
(16).

Remark 1. Assuming that the prior p(θ) is arbitrary, but
fixed and that the noisy triplet z′ and the original data Z are
sampled from the same distribution, by using Bayes’ rule we
then get a similar estimate for the posterior distribution, i.e.,

| log p(θ|Z, z′)− log p(θ|Z)| ≤ 2(Cd + 1)− logC = β.
(19)

Hence, according to the Definition 2 and (19), Algorithm 1
is Bayesian robust against noisy label triplet.
Theorem 1. Given Lemma 1, and supposing that we have N
noisy label triplets z′1, . . . , z

′
N that are conditionally indepen-

dent given the parameter θ, then

| log p(θ|{Z, z′1, . . . z′N})− log p(θ|Z)| ≤ Nβ. (20)

Proof. By applying the result in (19) of Lemma 1 we get

| log p(θ|{Z, z′1})− log p(θ|Z)| ≤ β;
| log p(θ|{Z, z′1, z′2})− log p(θ|Z, z′1)| ≤ β;
. . .

| log p(θ|{Z, z′1, . . . z′N})− log p(θ|{Z, z′1, . . . z′N−1})| ≤ β.
(21)

Moreover, by using the triangle inequality we ob-
tain (20).

Given an arbitrary training set, the theoretical result in
Lemma 1 indicates that our proposed method is β-robust
against a noisy label triplet z′. However, in many real-life
applications, the noise level is often much larger, that is, we
have to deal with a number of noisy triplets. The theoretical
result in Theorem 1, which is an extension of (19), shows
the robustness of our proposed novel method given a par-
ticular noise level represented by N noisy triplets. More-
over, it would be interesting to clarify that although the def-
inition of the robustness of a metric learning algorithm had
been dicussed, for example, in [Bellet and Habrard, 2015;
Huai et al., 2019], these papers do not take noisy labels into
account.



Noise Rate 0% 10% 20% 30% 50%
PCA 97.87± 0.09 95.35± 0.30 89.56± 0.53 80.70± 0.47 59.02± 0.65
BLMNN 98.98± 0.08 97.08± 0.20 92.25± 0.51 84.47± 0.47 63.60± 0.81
DML 98.66± 0.07 97.76± 0.20 95.34± 0.35 91.40± 0.52 71.86± 0.47
BDML (ours) 98.79± 0.09 97.60± 0.18 95.25± 0.34 91.59± 0.36 73.60± 0.6

Table 1: Classification results for MNIST (mean±stdev) after five runs for different rates of uniform label noise. The best result per column
is in bold

Noise Rate 0% 10% 20% 30% 50% 60%
PCA 76.64± 0.41 72.98± 0.29 67.83± 0.54 60.91± 0.18 44.06± 0.73 35.89± 0.48
BLMNN 79.96± 0.17 76.56± 0.28 71.18± 0.53 64.89± 0.38 47.74± 0.15 38.31± 0.71
DML 81.81± 0.30 80.21± 0.29 77.90± 0.34 74.05± 0.24 59.76± 0.64 51.50± 0.96
BDML (ours) 82.63± 0.12 81.01± 0.27 78.81± 0.25 75.17± 0.34 61.40± 0.46 53.14± 0.67

Table 2: Classification results for CIFAR-10 (mean±stdev) after five runs for different rates of uniform label noise. The best result per column
is in bold

4 Experiments and Results
In this section, we quantitatively evaluate our proposed
method based on the experiments conducted on several
benchmark data sets that contain different types of la-
bel noise. In particular, our proposed method Bayesian
deep metric learning (BDML) is compared with BLMNN
and the deterministic triplet-based deep metric learning
(DML) with respect to classification performance on the
data sets MNIST [LeCun and others, 1998] and CIFAR-
10 [Krizhevsky et al., 2012] with synthetic label noise, and
face retrieval results on MS-Celeb-1M [Guo and others,
2016] with realistic noisy labels. In all our experiments, we
adopt a simple network architecture for deep learning mod-
els with two fully-connected hidden layers of 512-dimension
and Tanh activation function between intermediate layers.
Our proposed framework consists of the following steps: (i)
extract features by an unsupervised method; (ii) apply PCA
to project data points onto a smaller dimensional space; (iii)
standardize features to standard Normal distribution, then use
these features for comparing methods.

The values of these hyper-parameters were selected by us-
ing 10% of training data as a hold-out set for validation. Per-
formance is calculated by 3-NN classifier, each experiment is
repeated five times, and the comparison results with respect
to the top-1 classification accuracy (mean±stdev) as a func-
tion of the percentage of noisy labels in the training set are
reported.

4.1 Image Classification with Synthetic Label
Noise

Symmetric noise
The MNIST data set [LeCun and others, 1998] contains
28×28 black and white handwritten digits in 10 classes, (with
50000 training and 10000 testing samples). The new training
data set of MNIST is generated by randomly stratified sub-
sampling 5000 training data points from the original training
data (i.e., 500 samples for each class), and the standard test
set is unchanged – this enables a fair comparison between
different methods. The 300-dimensional feature vector for
each data point is extracted by using the unsupervised repre-
sentation learning model CSVDDNet [Wang and Tan, 2018;
Wang and Tan, 2016]. Uniform (or symmetric) label noise
with corresponding level in the set {0, 10%, 20%, 30%} is
then injected into the new training data set by flipping the
labels by the respective proportion of data points.

Hyper-parameters settings: for the BDML model we run
50 epochs, set the learning rate to 0.0001 with decay rate
0.5 at epochs 30, prior distribution for weights and bias are
Gaussian distributions with mean 0 and standard deviation 1
for weights, 2 for bias; batch size is set to 1024; for the DML
model, we run 50 epochs, learning rate is set to 0.00001 with
decay rate 0.5 at epoch 30, batch size is set to 128. For the
BLMNN model, we follow the hyper-parameter setting sug-
gested by authors [Wang and Tan, 2018]

Table 1 shows that in the case of clean data set, BLMNN,
which employs a linear transformation, produces slightly bet-
ter classification performance than both DML and BDML.
However, when the noise level increases, deep metric-based
methods outperform linear model. In particular, in the case
of 30% noise, our method outperforms BLMNN with a large
margin (7.12%), and in the most extreme case with 50% of
noise, BDML produces better results than both BLMNN and
DML.

The CIFAR-10 data set [Krizhevsky et al., 2012] con-
sists of 32 × 32 colour images (with 50000 training and
10000 testing samples, and 10 classes). The new training
data set is generated by randomly sub-sampling 5000 data
points from original training data (i.e., 500 samples for each
class), while the standard test set remained. In the case of
60% noise level, we use a subset of 10, 000 training sam-
ples with the same process. The 2048-dimensional feature of
each data point is extracted with the recently proposed Sim-
ple Framework for Contrastive Learning of Visual Represen-
tations (SimCLR) [Chen and others, 2020] for the feature ex-
traction process.

Hyper-parameters settings: for the BDML model, we run
50 epochs, set learning rate to 0.0001 with decay rate 0.5 at
epoch 30, prior distribution for weights and bias are Gaus-
sian distributions with mean 0 and standard deviation 1 for
weights, 2 for bias. For DML model, we set learning rate to
0.00001 (0.00005 for the case 60%-noise level) with decay
rate 0.5 at epoch 30 and 50, batch size is set to 512. For
BLMNN model, we use the prior mean 0.00001 and variance
0.001.

We report the performance of three models with re-
spect to different noise levels in the set {0, 10%, 20%,
30%, 50%, 60%} in Table 2. It is clear that the use of a deep
metric learning gives better classification results comparing
with linear method, especially when the noise level increases.
To be more specific, the gap between BLMNN and BDML



Noise Rate PCA BLMNN DML BDML (ours)
[0.5 0.6 0.1 0.4 0.4 0.4 0.2 0.4 0.6 0.3] 53.68± 0.43 55.99± 0.30 67.76± 0.16 69.47± 0.49
[0.3 0.6 0.1 0.5 0.2 0.5 0.4 0.1 0.3 0.5] 56.89± 0.47 59.71± 0.80 70.60± 0.38 72.32± 0.37
[0.1 0.3 0.6 0.4 0.5 0.4 0.5 0.1 0.1 0.2] 60.49± 0.36 62.63± 0.29 71.43± 0.50 72.89± 0.47

Table 3: Classification results for CIFAR-10 (mean±stdev) after five runs for different class-conditional label noises, noise rates are presented
as a vector with length equals to the number of classes. The best result per row is in bold

Noise Rate 0% 20%
PCA 86.21 82.09
BLMNN 89.16 85.11
DML 91.89 86.50
BDML (ours) 93.45 87.66

Table 4: Experiment results for MS-Celeb-1M (mAP %). The best
result per column is in bold

increases from 2.67% at clean label to 14.83% at 60% la-
bel noise. More importantly, the results in that table consis-
tently show that our proposed BDML method, which adopt
Bayesian inference, outperforms DML, which adopt MLE for
parameter estimation, across different noise levels.

Class-conditional Label Noise
In this experiment, we examine those methods above on
10, 000 sub-sampled data set being stratified from the orig-
inal CIFAR-10 data set [Krizhevsky et al., 2012]. That is, the
new data subset remains the class distributions of the origi-
nal training data set. The class-conditional label noise rang-
ing from 10% to 60%, is randomly generated by flipping the
labels with corresponding proportions of data samples. We
keep the previous mentioned hyper-parameters settings for
each model. The results reported in Table 3 show that our
proposed method BDML consistently outperforms DML and
BLMNN with large margins across different noise vectors.

4.2 Face Retrieval on MS-Celeb 1M with Realistic
Noisy Labels

MS-Celeb-1M [Guo and others, 2016] is a large scale data
set (with 10M images of 100, 000 celebrities) that contains
realistic label noise. We adopt the same setting in [Wang
and Tan, 2018] to form the new training set for this experi-
ment. In particular, we first randomly select a subset of the
original training with 100K images of 1200 persons. This
subset is then split with ratio 9:1 into a training set that
contains approximately 20% of label noise and a clean test
set, respectively. The 4096-dimensionality feature vector of
each data point in this subset is extracted by using the VG-
GFace [Parkhi et al., 2015] model. We run 80 epochs, for
the BDML model learning rate is 0.0001 with decay rate 0.5
at epoch 25, 45, 55, 65, prior distribution for both weights
and bias are Gaussian distributions with mean 0 and stan-
dard deviation 0.5; batch size is set to 256. For the DML
model, we set learning rate to 0.00001 with decay rate 0.5 at
epoch 10, 20, 40, batch size is set to 128. For the BLMNN
model, we follow the hyper-parameter setting suggested by
authors [Wang and Tan, 2018]. Table 4 shows the compari-
son using the mean of average precision (mAP) between our
proposed BDML and other competing methods.

The results in Table 4 consistently indicate the advantage
of using deep metric in real world label noisy dataset. Both

DML and BDML show their better retrieval performance
compared to the linear distance metric. Moreover, it is clear
from Table 4 that our proposed method BDML is superior to
the point estimation DML – this is evidence that the use of
Bayesian inference is more robust than the point estimation
when working with label noise.

5 Conclusions
In this paper, we proposed a novel theoretically sound
Bayesian deep metric learning method to handle the issue of
learning a deep model with noisy labels. To the best of our
knowledge, this is the first work that introduces Bayesian in-
ference in deep metric learning to improve the generalization
capacity of two existing methods: robust Bayesian linear met-
ric learning and point estimation deep metric learning. It is
also important to note that our main goal with this paper is the
introduction of an innovative framework that can improve the
performance of both baselines, including BLMNN and DML.
We are not aware of other SOTA methods in the scope of this
paper. In the future, we plan to test our proposed method with
more complicated base models (e.g., ResNet [He and others,
2016]) instead of the simple neural network to obtain better
experimental results. We also plan to extend our current work
to make it robust under simulated label noise [Wang and Tan,
2018] which has been shown to be more challenging than the
types of label noise mentioned in our paper.
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