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ABSTRACT

Principal component analysis is a simple yet useful dimensionality reduction tech-
nique in modern machine learning pipelines. In consequential domains such as
college admission, healthcare and credit approval, it is imperative to take into
account emerging criteria such as the fairness and the robustness of the learned
projection. In this paper, we propose a distributionally robust optimization prob-
lem for principal component analysis which internalizes a fairness criterion in the
objective function. The learned projection thus balances the trade-off between
the total reconstruction error and the reconstruction error gap between subgroups,
taken in the min-max sense over all distributions in a moment-based ambiguity
set. The resulting optimization problem over the Stiefel manifold can be effi-
ciently solved by a Riemannian subgradient descent algorithm with a sub-linear
convergence rate. Our experimental results on real-world datasets show the merits
of our proposed method over state-of-the-art baselines.

1 INTRODUCTION

Machine learning models are ubiquitous in our daily lives and supporting the decision-making pro-
cess in diverse domains. With their flourishing applications, there also surface numerous concerns
regarding the fairness of the models’ outputs (Mehrabi et al., 2021). Indeed, these models are prone
to biases due to various reasons (Barocas et al., 2018). First, the collected training data is likely
to include some demographic disparities due to the bias in the data acquisition process (e.g., con-
ducting surveys on a specific region instead of uniformly distributed places), or the imbalance of
observed events at a specific period of time. Second, because machine learning methods only care
about data statistics and are objective driven, groups that are under-represented in the data can be
neglected in exchange for a better objective value. Finally, even human feedback to the predictive
models can also be biased, e.g., click counts are human feedback to recommendation systems but
they are highly correlated with the menu list suggested previously by a potentially biased system.
Real-world examples of machine learning models that amplify biases and hence potentially cause
unfairness are commonplace, ranging from recidivism prediction giving higher false positive rates
for African-American1 to facial recognition systems having large error rate for women2.

To tackle the issue, various fairness criteria for supervised learning have been proposed in the ma-
chine learning literature, which encourage the (conditional) independence of the model’s predic-
tions on a particular sensitive attribute (Dwork et al., 2012; Hardt et al., 2016b; Kusner et al., 2017;
Chouldechova, 2017; Verma & Rubin, 2018; Berk et al., 2021). Strategies to mitigate algorithmic
bias are also investigated for all stages of the machine learning pipelines (Berk et al., 2021). For the
pre-processing steps, (Kamiran & Calders, 2012) proposed reweighting or resampling techniques to
achieve statistical parity between subgroups; or in the training steps, fairness can be encouraged by
adding constraints (Donini et al., 2018) or regularizing the original objective function (Kamishima
et al., 2012; Zemel et al., 2013); and in the post-processing steps, adjusting classification threshold
based on examining black-box models over a holdout dataset can be used (Hardt et al., 2016b; Wei
et al., 2019).

Since biases may already exist in the raw data, it is reasonable to demand the machine learning
pipeline to combat biases as early as possible. We focus in this paper on the Principal Component

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
2https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212
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Analysis (PCA), which is a fundamental dimensionality reduction technique in the early stage of
the pipelines (Pearson, 1901; Hotelling, 1933). PCA finds a linear transformation that embeds the
original data into a lower-dimensional subspace that maximizes the variance of the projected data.
Thus, PCA is prone to amplify biases if the data variability is different between the majority and
the minority subgroups, see a toy example in Figure 1. A naive approach to promote fairness is
to train one independent transformation for each subgroup. However, this requires knowing the
sensitive attribute of each sample at test time, which would raise disparity concerns. On the con-
trary, using a single transformation for all subgroups is “group-blinded” and faces no discrimination
problem (Lipton et al., 2018).

Learning a fair PCA has attracted attention from many fields from machine learning, statistics to
signal process. Samadi et al. (2018) and Zalcberg & Wiesel (2021) propose to find the principal
components that minimize the maximum subgroup reconstruction error; the min-max formulations
can be relaxed and solved as semidefinite programs. Olfat & Aswani (2019) propose to learn a
transformation that minimizes the possibility of predicting the sensitive attribute from the projected
data. Apart from being a dimensionality reduction technique, PCA can also be thought of as a
representation learning toolkit. Viewed in this way, we can also consider a more general family of
fair representation learning methods that can be applied before any further analysis steps. There
are a number of works develop towards this idea (Kamiran & Calders, 2012; Zemel et al., 2013;
Calmon et al., 2017; Feldman et al., 2015; Beutel et al., 2017; Madras et al., 2018; Zhang et al.,
2018; Tantipongpipat et al., 2019), which apply a multitude of fairness criteria.

In addition, we also focus on the robustness criteria for the linear transformation. Recently, it has
been observed that machine learning models are susceptible to small perturbations of the data (Good-
fellow et al., 2014; Madry et al., 2017; Carlini & Wagner, 2017). These observations have fuelled
many defenses using adversarial training (Akhtar & Mian, 2018; Chakraborty et al., 2018) and dis-
tributionally robust optimization (Rahimian & Mehrotra, 2019; Kuhn et al., 2019).

Contributions. This paper blends the ideas from the field of fairness in artifical intelligence and
distributionally robust optimization. Our contributions can be described as follows.

• We propose the fair principal components which balance between the total reconstruction error
and the absolute gap of reconstruction error between subgroups. Moreover, we also add a layer
of robustness to the principal components by considering a min-max formulation that hedges
against all perturbations of the empirical distribution in a moment-based ambiguity set.

• We provide the reformulation of the distributionally robust fair PCA problem as a finite-
dimensional optimization problem over the Stiefel manifold. We provide a Riemannian gradient
descent algorithm and show that it has a sub-linear convergence rate.

Figure 1 illustrates the qualitative comparison
between (fair) PCA methods and our proposed
method on a 2-dimensional toy example. The
majority group (blue dots) spreads on the hor-
izontal axis, while the minority group (yellow
triangles) spreads on the slanted vertical axis.
The nominal PCA (red) captures the majority
direction to minimize the total error, while the
fair PCA of Samadi et al. (2018) returns the
diagonal direction to minimize the maximum
subgroup error. Our fair PCA can probe the
full spectrum in between these two extremes by
sweeping through our penalization parameters
appropriately. If we do not penalize the error
gap between subgroups, we recover the PCA
method; if we penalize heavily, we recover the
fair PCA of Samadi et al. (2018). Extensive nu-
merical results on real datasets are provided in
Section 5. Proofs are relegated to the appendix.

Figure 1: Nominal PCA (red arrow), fair PCA by
Samadi et al. (2018) (green arrow), and our spec-
trum of fair PCA (shorter arrows). Arrows show
directions and are not normalized to unit length.
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2 FAIR PRINCIPAL COMPONENT ANALYSIS

2.1 PRINCIPAL COMPONENT ANALYSIS

We first briefly revisit the classical PCA. Suppose that we are given a collection of N i.i.d. samples
{x̂i}Ni=1 generated by some underlying distribution P. For simplicity, we assume that both the
empirical and population mean are zero vectors. The goal of PCA is to find a k-dimensional linear
subspace of Rd that explains as much variance contained in the data {x̂i}Ni=1 as possible, where k <
d is a given integer. More precisely, we parametrize k-dimensional linear subspaces by orthonormal
matrices, i.e., matrices whose columns are orthogonal and have unit Euclidean norm. Given any
such matrix V , the associated k-dimensional subspace is the one spanned by the columns of V .
The projection matrix onto the subspace is V V ⊤, and hence the variance of the projected data is
given by tr

(
V V ⊤ΞΞ⊤), where Ξ = [x̂1, · · · , x̂N ] ∈ Rd×N is the data matrix. By a slight abuse of

terminology, sometimes we refer to V as the projection matrix. The problem of PCA then reads

max
V ∈Rd×k,V ⊤V=Ik

tr
(
V V ⊤ΞΞ⊤) . (1)

For any vector X ∈ Rd and orthonormal matrix V , denote by ℓ(V,X) the reconstruction error, i.e.,

ℓ(V,X) = ∥X − V V ⊤X∥22 = X⊤(Id − V V ⊤)X.

The problem of PCA can alternatively be formulated as a stochastic optimization problem

min
V ∈Rd×k,V ⊤V=Ik

EP̂[ℓ(V,X)], (2)

where P̂ is the empirical distribution associated with the samples {x̂i}Ni=1 and X ∼ P̂. It is well-
known that PCA admits an analytical solution. In particular, the optimal solution to problem (2) (and
also problem (1)) is given by any orthonormal matrix whose columns are the eigenvectors associated
with the k largest eigenvalues of the sample covariance matrix ΞΞ⊤.

2.2 FAIR PRINCIPAL COMPONENT ANALYSIS

In the fair PCA setting, we are also given a discrete sensitive attribute A ∈ A, where A may represent
features such as race, gender or education. We consider binary attribute A and let A = {0, 1}. A
straightforward idea to define fairness is to require the (strict) balance of a certain objective between
the two groups. For example, this is the strategy in Hardt et al. (2016a) for developing fair supervised
learning algorithms. A natural objective to balance in the PCA context is the reconstruction error. It
is therefore tempted to adopt the following definition.
Definition 2.1 (Fair projection). Let Q be an arbitrary distribution of (X,A). A projection matrix
V ∈ Rd×k is fair relative to Q if the conditional expected reconstruction error is equal between
subgroups, i.e.,

EQ[ℓ(V,X)|A = a] = EQ[ℓ(V,X)|A = a′] ∀(a, a′) ∈ A×A.

Unfortunately, Definition 2.1 is too stringent: for a general probability distribution Q, it is possible
that there exists no fair projection matrix V .
Proposition 2.2 (Impossibility result). For any distribution Q on X × A, let S = EQ[XX⊤|A =
0] − EQ[XX⊤|A = 1]. Then, there exists a fair projection matrix V ∈ Rd×k relative to Q if and
only if rank(S) ≤ k.

One way to circumvent the impossibility result is to relax the requirement of strict balance to ap-
proximate balance. In other words, an inequality constraint of the following form is imposed:

|EQ[ℓ(V,X)|A = a]− EQ[ℓ(V,X)|A = a′]| ≤ ϵ ∀(a, a′) ∈ A×A,

where ϵ > 0 is some prescribed fairness threshold. This approach has been adopted in other fair
machine learning settings, see Donini et al. (2018) and Agarwal et al. (2019) for example.

In this paper, instead of imposing the fairness requirement as a constraint, we penalize the unfairness
in the objective function. Specifically, for any projection matrix V , we define the unfairness as the
absolute difference between the conditional loss between two subgroups:

U(V,Q) ≜ |EQ[ℓ(V,X)|A = 0]− EQ[ℓ(V,X)|A = 1]|.
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We thus consider the following fairnes-aware PCA problem

min
V ∈Rd×k, V ⊤V=Ik

EP̂[ℓ(V,X)] + λU(V, P̂), (3)

where λ ≥ 0 is a penalty parameter to encourage fairness. Note that for fair PCA, the dataset is
{(x̂i, âi)}Ni=1 and hence the empirical distribution P̂ is given by P̂ = 1

N

∑N
i=1 δ(x̂i,âi).

3 DISTRIBUTIONALLY ROBUST FAIR PCA

The weakness of empirical distribution-based stochastic optimization has been well-documented,
see (Smith & Winkler, 2006; Homem-de Mello & Bayraksan, 2014). In particular, due to overfit-
ting, the out-of-sample performance of the decision, prediction, or estimation obtained from such a
stochastic optimization model is unsatisfactory, especially in the low sample size regime. Ideally,
we could improve the performance by using the underlying distribution P instead of the empirical
distribution P̂. But the underlying distribution P is unavailable in most practical situations, if not all.
Distributional robustification is an emerging approach to handle this issue and has been shown to
deliver promising out-of-sample performance in many applications (Delage & Ye, 2010; Namkoong
& Duchi, 2017; Kuhn et al., 2019; Rahimian & Mehrotra, 2019). Motivated by the success of dis-
tributional robustification, we propose a robustified version of model (3), called the distributionally
robust fairness-aware PCA:

min
V ∈Rd×k,V ⊤V=Ik

sup
Q∈B(P̂)

EQ[ℓ(V,X)] + λU(V,Q), (4)

where B(P̂) is a set of probability distributions similar to the empirical distribution P̂ in a certain
sense, called the ambiguity set. The empirical distribution P̂ is also called the nominal distribu-
tion. Many different ambiguity sets have been developed and studied in the optimization literature,
see Rahimian & Mehrotra (2019) for an extensive overview.

3.1 THE WASSERSTEIN-TYPE AMBIGUITY SET

To present our ambiguity set and main results, we need to introduce some definitions and notations.
Definition 3.1 (Wasserstein-type divergence). The divergenceW between two probability distribu-
tions Q1 ∼ (µ1,Σ1) ∈ Rd × Sd+ and Q2 ∼ (µ2,Σ2) ∈ Rd × Sd+ is defined as

W
(
Q1 ∥ Q2

)
≜ ∥µ1 − µ2∥22 + tr

(
Σ1 +Σ2 − 2

(
Σ

1
2
2 Σ1Σ

1
2
2

) 1
2

)
.

The divergence W coincides with the squared type-2 Wasserstein distance between two Gaussian
distributions N (µ1,Σ1) and N (µ2,Σ2) (Givens & Shortt, 1984). One can readily show that W is
non-negative, and it vanishes if and only if (µ1,Σ1) = (µ2,Σ2), which implies that Q1 and Q2 have
the same first- and second-moments.

Recall that the nominal distribution is P̂ = 1
N

∑N
i=1 δ(x̂i,âi). For any a ∈ A, its conditional distri-

bution given A = a is given by

P̂a =
1

|Ia|
∑
i∈Ia

δxi , where Ia ≜ {i ∈ {1, . . . , N} : ai = a}.

We also use (µ̂a, Σ̂a) to denote the empirical mean vector and covariance matrix of X given A = a:

µ̂a = EP̂a
[X] = EP̂[X|A = a] and Σ̂a + µ̂aµ̂

⊤
a = EP̂a

[XX⊤] = EP̂[XX⊤|A = a].

For any a ∈ A, the empirical marginal distribution of A is denoted by p̂a = |Ia|/N .

Finally, for any set S, we use P(S) to denote the set of all probability distributions supported on S.
For any integer k, the k-by-k identity matrix is denoted Ik.

We then define our ambiguity set as

B(P̂) ≜

Q ∈ P(X ×A) :
∃Qa ∈ P(X ) such that:
Q(dx× da) =

∑
a∈A p̂aQa(dx)δa(da)

W(Qa, P̂a) ≤ εa ∀a ∈ A

 , (5)
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where Qa is the conditional distribution of X|A = a. Intuitively, each Q ∈ B(P̂) is a joint distribu-
tion of the random vector (X,A), formed by taking a mixture of conditional distributions Qa with
mixture weight p̂a. Each conditional distribution Qa is constrained in an εa-neighborhood from the
nominal conditional distribution P̂a with respect to the W divergence. Notice that because the loss
function ℓ is a quadratic function of X , the (conditional) expected losses only involve the first two
moments of X , and thus prescribing the ambiguity set using W would suffice for the purpose of
robustification.

3.2 REFORMULATION

We now present the reformulation of problem (4) under the ambiguity set B(P̂).
Theorem 3.2 (Reformulation). Suppose that either of the following two conditions holds:

(i) 0 ≤ λ ≤ min{p̂a, p̂a′},

(ii) for any a ∈ A, the empirical second moment matrix M̂a = 1
Na

∑
i∈Ia

x̂ix̂
⊤
i satisfies∑d−k

j=1 σj(M̂a) ≥ εa, where σj(M̂a) is the j-th smallest eigenvalues of M̂a.

Then problem (4) is equivalent to

min
V ∈Rd×k,V ⊤V=Ik

max{J0(V ), J1(V )}, (6a)

where for each (a, a′) ∈ {(0, 1), (1, 0)}, the function Ja is defined as

Ja(V ) = κa + θa

√〈
Id − V V ⊤, M̂a

〉
+ ϑa′

√〈
Id − V V ⊤, M̂a′

〉
+
〈
Id − V V ⊤, Ca

〉
, (6b)

and the parameters κ ∈ R, θ ∈ R, ϑ ∈ R and C ∈ Sd+ are defined as

κa = (p̂a + λ)εa + (p̂a′ − λ)εa′ , θa = 2|p̂a + λ|√εa, ϑa′ = 2|p̂a′ − λ|√εa′ ,

Ca = (p̂a + λ)M̂a + (p̂a′ − λ)M̂a′ .
(6c)

We now briefly explain the steps that lead to the results in Theorem 3.2. Letting

J0(V ) = sup
Q∈B(P̂)

(p̂0 + λ)EQ[ℓ(V,X)|A = 0] + (p̂1 − λ)EQ[ℓ(V,X)|A = 1],

J1(V ) = sup
Q∈B(P̂)

(p̂0 − λ)EQ[ℓ(V,X)|A = 0] + (p̂1 + λ)EQ[ℓ(V,X)|A = 1],

then by expanding the term U(V,Q) using its definition, problem (4) becomes

min
V ∈Rd×k,V ⊤V=Ik

max{J0(V ), J1(V )}.

By the definition the ambiguity set B(P̂), for any pair (a, a′) ∈ {(0, 1), (1, 0)}, we can decompose
Ja into two separate supremum problems as follows

Ja(V ) = sup
Qa:W(Qa,P̂a)≤εa

(p̂a + λ)EQa [ℓ(V,X)] + sup
Q1:W(Qa′ ,P̂a′ )≤εa′

(p̂a′ − λ)EQa′ [ℓ(V,X)].

The next proposition asserts that each individual supremum in the above expression admits an ana-
lytical expression.
Proposition 3.3 (Reformulation). Fix a ∈ A. For any υ ∈ R, εa ∈ R+, it holds that

sup
Qa:W(Qa,P̂a)≤εa

υEQa
[ℓ(V,X)]

=


υ

(√〈
Id − V V ⊤, M̂a

〉
+

√
εa

)2

if υ ≥ 0,

υ

(√〈
Id − V V ⊤, M̂a

〉
−√

εa

)2

if υ < 0 and
〈
Id − V V ⊤, M̂a

〉
≥ εa,

0 if υ < 0 and
〈
Id − V V ⊤, M̂a

〉
< εa.
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The proof of Theorem 3.2 now follows by applying Proposition 3.3 to each term in Ja, and balance
the parameters to obtain (6c). A detailed proof is relegated to the appendix. In the next section, we
study an efficient algorithm to solve (6a).
Remark 3.4 (Recovery of the nominal PCA). If λ = 0 and εa = 0 ∀a ∈ A, our formulation (4)
becomes the standard PCA problem (2). In this case, our robust fair principal components reduce
to the standard principal components. On the contrary, existing fair PCA methods such as Samadi
et al. (2018) and Olfat & Aswani (2019) cannot recover the standard principal components.

4 RIEMANNIAN GRADIENT DESCENT ALGORITHM

Using Theorem 3.2, our distributionally robust fairness-aware PCA problem (4), which is an infinite-
dimensional minimax problem, is reduced to the simpler finite-dimensional minimax problem (6a),
where the inner problem is only a maximization over two points. Problem (6a) is, however, still
challenging as it is a non-convex optimization problem over a non-convex feasible region defined
by the orthogonality constraint V ⊤V = Id. The purpose of this section is to devise an efficient
algorithm for solving problem (6a) to local optimality based on Riemannian optimization.

4.1 REPARAMETRIZATION

As mentioned above, the non-convexity of problem (6a) comes from both the objective function and
the feasible region. It turns out that we can get rid of the non-convexity of the objective function
via a simple change of variables. To see that, we let U ∈ Rd×(d−k) be an orthonormal matrix
complement to V , that is, U and V satisfy UU⊤ + V V ⊤ = Id. Thus, we can express the objective
function J via

J(V ) = F (U) ≜ max{F0(U), F1(U)},
where for (a, a′) ∈ {(0, 1), (1, 0)}, the function Fa is defined as

Fa(U) ≜ κa + θa

√〈
UU⊤, M̂a

〉
+ ϑa′

√〈
UU⊤, M̂a′

〉
+
〈
UU⊤, Ca

〉
.

Moreover, letting M ≜ {U ∈ Rd×(d−k) : U⊤U = Id−k}, we can re-express problem (6a) as

min
U∈M

F (U). (7)

The feasible region M of problem (7) is a Riemannian manifold, called the Stiefel manifold (Absil
et al., 2007, Section 3.3.2). It is then natural to solve problem (7) by using Riemannian optimization
algorithms (Absil et al., 2007). In fact, problem (6a) itself (before the change of variables) can
also be seen as a Riemannian optimization problem over another Stiefel manifold. The change of
variables above might seem unnecessary. Nonetheless, the upshot of problem (7) is that the objective
function F is convex (in the traditional sense). This faciliates the application of the theoretical and
algorithmic framework developed in Li et al. (2019) for (weakly) convex optimization over Stiefel
manifolds.

4.2 THE RIEMANNIAN SUBGRADIENT

Note that the objective function F is non-smooth since it is defined as the maximum of two func-
tions F0 and F1. To apply the framework in Li et al. (2019), we need to compute the Riemannian
subgradient of the objective function F . Since the Stiefel manifold M is an embedded manifold in
Euclidean space, the Riemannian subgradient of F at any point U ∈ M is given by the orthogonal
projection of the usual Euclidean subgradient onto the tangent space of the manifold M at the point
U , see Absil et al. (2007, Section 3.6.1) for example.
Lemma 4.1. For any point U ∈ M, let3 aU ∈ argmaxa∈{0,1} Fa(U) and a′U = 1 − aU . Then, a
Riemannian subgradient of the objective function F at the point U is given by

gradF (U) = (Id − UU⊤)

 θaU√〈
UU⊤, M̂aU

〉M̂aU
U +

ϑa′
U√〈

UU⊤, M̂a′
U

〉M̂a′
U
U + 2CaU

U

 .

3It is possible that the maximizer is not unique. In that case, choosing aU to be either 0 or 1 would work.
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4.3 RETRACTIONS

Another important instrument required by the framework in Li et al. (2019) is a retraction of the
Stiefel manifold M. At each iteration, the point U − γ∆ obtained by moving from the current
iterate U in the opposite direction of the Riemannian gradient ∆ may not lie on the manifold in
general, where γ > 0 is the stepsize. In Riemannian optimization, this is circumvented by the
concept of retraction. Given a point U ∈ M on the manifold, the Riemannian gradient ∆ ∈
TUM (which must lie in the tangent space TUM) and a stepsize γ, the retraction map Rtr defines a
point RtrU (−γ∆) which is guaranteed to lie on the manifold M. Roughly speaking, the retraction
RtrU ( · ) approximates the geodesic curve through U along the input tangential direction. For a
formal definition of retractions, we refer the readers to (Absil et al., 2007, Section 4.1). In this
paper, we focus on the following two commonly used retractions for Stiefel manifolds. The first one
is the QR decomposition-based retraction

Rtrqf
U (∆) = qf(U +∆), U ∈ M,∆ ∈ TUM,

where qf( · ) is the Q-factor in the QR decomposition. The second one is the polar decomposition-
based retraction

Rtrpolar
U (∆) = (U +∆)(Id−k +∆⊤∆)−

1
2 , U ∈ M,∆ ∈ TUM. (8)

4.4 ALGORITHM AND CONVERGENCE GUARANTEES

Associated with any choice of retraction Rtr is a concrete instantiation of the Riemannian subgradi-
ent descent algorithm for our problem (7), which is presented in Algorithm 1.

Algorithm 1 Riemannian Subgradient Descent for (7)

1: Input: An initial point U0, a number of iterations τ and a retraction Rtr : (U,∆) 7→ RtrU (∆).
2: for t = 0, 1, . . . , τ − 1, do
3: Find at ≜ argmaxa∈{0,1}{Fa(Ut)}.
4: Compute the Riemannian subgradient ∆t = gradF (Ut) using the formula

∆t = (I − UtUt
⊤)

 θat√〈
UtU⊤

t , M̂at

〉M̂at
Ut +

ϑa′
t√〈

UtU⊤
t , M̂a′

t

〉M̂a′
t
Ut + 2Cat

Ut

 .

5: Set Ut+1 = RtrUt
(−γt∆t), where the step-size γt ≡ 1√

τ+1
is constant.

6: end for
7: Output: Uτ .

The specific choice of the stepsizes γt is motivated by the theoretical results of (Li et al., 2019).

We now study the convergence guarantee of Algorithm 1. The following lemma shows that the
objective function F is Lipschitz continuous (with respect to the Riemannian metric on the Stiefel
manifold M) with an explicit Lipschitz constant L.
Lemma 4.2 (Lipschitz continuity). The function F is L-Lipschitz continuous on M, where L > 0
is given by

L ≜ max

{
θ0

σmax(M̂0)√
σmin(M̂0)

, θ1
σmax(M̂1)√
σmin(M̂1)

, ϑ0
σmax(M̂0)√
σmin(M̂0)

, ϑ1
σmax(M̂1)√
σmin(M̂1)

,

2
√
d− kσmax(C0), 2

√
d− kσmax(C1)

}
.

(9)

We now proceed to show that Algorithm 1 enjoys a sub-linear convergence rate. To state the result,
we define the Moreau envelope

Fµ(U) ≜ min
U ′∈M

{
F (U ′) +

1

2µ
∥U ′ − U∥2F

}
,
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where ∥ · ∥F denotes the Frobenius norm of a matrix. Also, to measure the progress of the algorithm,
we need to introduce the proximal mapping on the Stiefel manifold (Li et al., 2019):

proxµF (U) ∈ argmin
U ′∈M

{
F (U ′) +

1

2µ
∥U ′ − U∥2F

}
.

From Li et al. (2019, Equaton (22)), we have that

∥gradF (U)∥F ≤
∥∥proxµF (U)− U

∥∥
F

µ
≜ gapµ(U).

Therefore, the number gapµ(U) is a good candidate to quantify the progress of optimization algo-
rithms for solving problem (7).
Theorem 4.3 (Convergence guarantee). Let {Ut}t=1,...,τ be the sequence of iterates generated by
Algorithm 1. Suppose that µ = 1/4L, where L is the Lipschitz constant of F in (9). Then, we have

min
t=0,...,τ

gapµ(Ut) ≤
2
√
Fµ(U0)−minU Fµ(U) + 2L3(L+ 1)

(τ + 1)1/4
.

5 NUMERICAL EXPERIMENTS

We compare our proposed method, denoted RFPCA, against two state-of-the-art methods for fair
PCA: 1) FairPCA from Samadi et al. (2018)4, and 2) CFPCA from Olfat & Aswani (2019)5 with
both cases: only mean constraint, and both mean and covariance constraints. We consider a wide
variety of datasets from UC Irvine’s online Machine Learning Repository (Dua & Graff, 2017) with
ranging sample sizes and number of features. Further details about the datatasets can be found in
Appendix B. The code for all experiments is available in supplementary materials.

We include here some details about the hyper-parameters that we search in the cross-validation steps.

• RFPCA. We notice that the neighborhood size εa should be inversely proportional to the size of
subgroup a. Indeed, a subgroup with large sample size is likely to have more reliable estimate
of the moment information. Then we parameterize the neighborhood size εa by a common
scalar α, and we have εa = α/Na, where Na is the number of samples in group a. We search
α ∈ {0.05, 0.1, 0.15} and λ ∈ {0., 0.5, 1., 1.5, 2.0, 2.5}. For better convergence quality, we set
the number of iteration for our subgradient descent algorithm to τ = 1000 and also repeat the
Riemannian descent for 20 randomly generated initial point U0.

• FairPCA. According to Samadi et al. (2018), we only need tens of iterations for the multiplica-
tive weight algorithm to provide good-quality solution; however, to ensure a fair comparison, we
set the number of iterations to be 1000 for the convergence guarantee. We search the learning
rate η of the algorithm from set of 17 values evenly spaced in [0.25, 4.25] and {0.1}.

• CFPCA. Followed Olfat & Aswani (2019), for the mean-constrained version of CFPCA, we
search δ from {0., 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9}, and for both mean and covariance constrained
version, we fix δ = 0 while searching µ in {0.0001, 0.001, 0.01, 0.05, 0.5}.

Trade-offs. First, we examine the trade-off between the total reconstruction error and the gap be-
tween the subgroup error. In this experiment, we only compare our model with FairPCA and
CFPCA mean-constraint version. We plot a pareto curve for each of them over the two criteria with
different hyper-parameters (hyper-parameters test range are mentioned above). The whole datasets
are used for training and evaluation. The results averaged over 5 runs are shown in Figure 2.

In testing methods with different principal components, we first split each dataset into training set
and test set with equal size (50% each), the projection matrix of each method is learned from training
set and tested over both sets. In this case, we only compare our method with traditional PCA and
FairPCAmethod. We fix one set hyper-parameters for each method. For FairPCA, we set η = 0.1
and for RFPCA we set α = 0.15, λ = 0.5, others hyper-parameters are kept as discussed before.
The results are averaged over 5 different splits. Figure 3 shows the consistence of our method
performing fair projections over different values of k. Our method (cross) exhibits smaller gap of
subgroup errors. More results can be found in Appendix C.2.

4https://github.com/samirasamadi/Fair-PCA
5https://github.com/molfat66/FairML
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Figure 2: Pareto curves on Default Credit
dataset (all data) with 3 principal components

Figure 3: Subgroup average error with different k
on Biodeg dataset (Out-of-sample).

Cross-validations. Next, we report the performance of all methods based on four criteria: absolute
difference between average reconstruction error between groups (ABDiff.), average reconstruction
error of all data (ARE.), and the fairness criterion defined by Olfat & Aswani (2019) with respect
to a linear SVM’s classifier family (△FLin) 6. Due to the space constraint, we only include the
first two criteria in the main text, see Appendix 4 for full results. In Each dataset, one feature is
selected as a sensitive attribute, other features is used as the input for algorithms. To emphasize
the the generalization capacity of each algorithm, we split each dataset into a training set and a test
set with ratio of 30% − 70% respectively, and only extract top three principal components from
the training set. We find the best hyper-parameters by 3-fold cross validation, and prioritize the
one giving minimum value of the summation (ABDiff. + ARE.). The results are averaged over 10
different training-testing splits. We report the performance on both training set (In-sample data) and
test set (Out-of-sample data). The details results for Out-of-sample data is given in Table 1 while
one for In-sample data is reported in the appendix at Table 3.

Results. Our proposed RFPCAmethod outperforms on 10 out of 14 datasets in terms of the subgroup
error gap ABDiff, and 8 out of 14 with the totall error ARE. criterion. There are 4 datasets that
RFPCA gives the best results for both criteria, and for the remaining datasets, RFPCA has small
performance gaps compared with the best method.

Table 1: Out-of-sample errors on real datasets. Bold indicates the lowest error for each dataset.

RFPCA FairPCA CFPCA-Mean Con. CFPCA - Both Con.
Dataset ABDiff. ARE. ABDiff. ARE. ABDiff. ARE. ABDiff. ARE.

Default Credit 0.9483 10.3995 1.4401 10.4439 0.9367 10.9451 3.3359 22.0310
Biodeg 23.0066 33.8571 27.5159 34.6184 29.1728 37.6052 37.9533 50.7090
E. Coli 1.1500 1.7210 1.5280 2.4799 1.1005 2.9466 5.1275 5.6674
Energy 0.0125 0.2238 0.0138 0.2225 0.1229 2.7318 0.1001 7.9511

German Credit 2.0588 43.9032 1.3670 44.0064 1.7845 43.9648 1.4955 49.5014
Image 0.7522 6.0199 1.6129 10.2616 1.1499 14.3725 4.7013 19.3356
Letter 0.1712 7.4176 1.2489 7.4470 0.4427 8.7445 0.5743 15.1779
Magic 1.8314 3.9094 2.9405 3.3815 5.5790 4.2105 8.7810 9.0064

Parkinsons 0.3273 5.0597 0.8678 4.9044 3.3804 5.7260 18.3312 19.7001
SkillCraft 0.7669 8.2828 0.7771 8.2494 1.0283 9.9484 1.2849 15.9751

Statlog 0.0838 3.0998 0.3356 7.9734 0.4476 10.8263 13.8437 35.8268
Steel 1.1472 12.5944 1.2208 12.3096 4.8710 16.4015 3.8084 25.8953

Taiwan Credit 0.5523 10.9845 0.5710 10.9415 0.5744 13.0437 0.9535 21.8963
Wine Quality 0.6359 4.2801 0.3046 6.0936 1.5020 6.1118 3.0451 10.1001

6code for estimate this quantity is provided at the author’s repository
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A PROOFS

A.1 PROOFS OF SECTION 2

Proof of Proposition 2.2. We first prove the “only if” direction. Suppose that there exists a fair
projection matrix V ∈ Mk relative to Q. Let U ∈ Md−k be a complement matrix of V . Then,
Definition 2.1 can be rewritten as

⟨UU⊤, S⟩ = 0,

which implies that the null space of S has a dimension at least d − k. By the rank-nullity duality,
we have rank(S) ≤ k.

Next, we prove the “if” direction. Suppose that rank(S) ≤ k. Then, the matrix S has at least d− k
(repeated) zero eigenvalues. Let U ∈ Md−k be an orthonormal matrix whose columns are any d−k
eigenvectors corresponding to the zero eigenvalues of S and V ∈ Mk be a complement matrix of
U . Then,

⟨Id − V V ⊤, S⟩ = ⟨UU⊤, S⟩ = 0.

Therefore, V is a fair projection matrix relative to Q. This completes the proof.

A.2 PROOF OF SECTION 3

Proofs of Proposition 3.3. By exploiting the definition of the loss function ℓ, we find

sup
Qa:W(Qa,P̂a)≤εa

υEQa
[ℓ(V,X)]

=


sup
µa,Σa

tr
(
υ(I − V V ⊤)(Σa + µaµ

⊤
a )
)

s.t. ∥µa − µ̂a∥22 + tr
(
Σa + Σ̂a − 2

(
Σ̂

1
2
aΣaΣ̂

1
2
a

) 1
2

)
≤ εa

=


inf γ(εa − tr

(
Σ̂a

)
) + γ2 tr

(
(γI − υ(I − V V ⊤))−1Σ̂a

)
+ τ

s.t.

[
γI − υ(I − V V ⊤) γµ̂a

γµ̂⊤
a γ∥µ̂a∥22 + τ

]
⪰ 0, γI ≻ υ(I − V V ⊤), γ ≥ 0,

where the last equality follows from Nguyen (2019, Lemma 3.22). By the Woodbury matrix inver-
sion, we have

(γI − υ(I − V V ⊤))−1 = γ−1I − υ

γ(υ − γ)
(I − V V ⊤).

Moreover, using the Schur complement, the semidefinite constraint is equivalent to

γ∥µ̂a∥22 + τ ≥ γ2µ̂⊤
a (γI − υ(I − V V ⊤))−1µ̂a,

which implies that at optimality, we have

τ =
υγ

γ − υ
µ̂⊤
a (I − V V ⊤)µ̂a.

12



Under review as a conference paper at ICLR 2022

At the same time, the constraint γI ≻ υ(I − V V ⊤) is equivalent to γ > υ. Combining all previous
equations, we have

sup
Qa:W(Qa,P̂a)≤εa

υEQa [ℓ(V,X)] = inf
γ>max{0,υ}

γεa +
γυ

γ − υ

〈
Id − V V ⊤, M̂a

〉
.

The dual optimal solution γ⋆ is given by

γ⋆ =


υ

(
1 +

√〈
Id−V V ⊤,M̂a

〉
εa

)
if υ ≥ 0,

υ

(
1−

√〈
Id−V V ⊤,M̂a

〉
εa

)
if υ < 0 and

〈
Id − V V ⊤, M̂a

〉
≥ εa,

0 if υ < 0 and
〈
Id − V V ⊤, M̂a

〉
< εa.

Note that γ⋆ ≥ max{0, υ} in all the cases. Therefore, we have

sup
Qa:W(Qa,P̂a)≤εa

υEQa
[ℓ(V,X)]

=


υ

(
√
εa +

√〈
Id − V V ⊤, M̂a

〉)2

if υ ≥ 0,

υ

(
√
εa −

√〈
Id − V V ⊤, M̂a

〉)2

if υ < 0 and
〈
Id − V V ⊤, M̂a

〉
≥ εa,

0 if υ < 0 and
〈
Id − V V ⊤, M̂a

〉
< εa.

This completes the proof.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. By expanding the absolute value, problem (4) is equivalent to

min
V ∈Rd×k,V ⊤V=Ik

max{J0(V ), J1(V )},

where for each (a, a′) ∈ {(0, 1), (1, 0)}, we can re-express Ja as

Ja(V ) = sup
Qa:W(Qa,P̂a)≤εa

(p̂a + λ)EQa
[ℓ(V,X)] + sup

Qa′ :W(Qa′ ,P̂a′ )≤εa′

(p̂a′ − λ)EQa′ [ℓ(V,X)]

Using Proposition 3.3 to reformulate the two individual supremum problems, we have

Ja(V ) = (p̂a + λ)εa + 2|p̂a + λ|
√

εa
〈
Id − V V ⊤, M̂a

〉
+ (p̂a + λ)

〈
Id − V V ⊤, M̂a

〉
+ (p̂a′ − λ)εa′ + 2|p̂a′ − λ|

√
εa′
〈
Id − V V ⊤, M̂a′

〉
+ (p̂a′ − λ)

〈
Id − V V ⊤, M̂a′

〉
.

By defining the necessary parameters κ, θ, ϑ and C as in the statement of the theorem, we arrive at
the postulated result.

A.3 PROOFS OF SECTION 4

Proof of Lemma 4.1. Let aU ∈ argmaxa∈{0,1} Fa(U) and a′U = 1 − aU . Then, an Euclidean
subgradient of F is given by

∇F (U) =
θaU√〈

UU⊤, M̂aU

〉M̂aU
U +

ϑa′
U√〈

UU⊤, M̂a′
U

〉M̂a′
U
U + 2CaU

U ∈ Rd×(d−k).

The tangent space of the Stiefel manifold M at U is given by

TUM = {∆ ∈ Rd×(d−k) : ∆⊤U + U⊤∆ = 0},
whose orthogonal projection (Absil et al., 2007, Example 3.6.2) can be computed explicitly via

ProjTUM(D) = (Id − UU⊤)D +
1

2
U(U⊤D −D⊤U), D ∈ Rd×(d−k).
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Therefore, a Riemannian subgradient of F at any point U ∈ M is given by

gradF (U) = ProjTUM(∇F (U))

= (Id − UU⊤)

 θaU√〈
UU⊤, M̂aU

〉M̂aU
U +

ϑa′
U√〈

UU⊤, M̂a′
U

〉M̂a′
U
U + 2CaU

U

 .

In the last line, we have used the fact that, if D = SU for some symmetric matrix S, then

U⊤D −D⊤U = U⊤SU − U⊤S⊤U = 0.

This completes the proof.

The proof of Lemma 4.2 relies on the following preliminary result.
Lemma A.1. Let M ∈ R(d−k)×(d−k) be a positive definite matrix. Then,∣∣〈UU⊤,M

〉
−
〈
U ′U ′⊤,M

〉∣∣ ≤ 2
√
d− kσmax(M)∥U − U ′∥F ∀U,U ′ ∈ M, (10)

and ∣∣∣∣√〈UU⊤,M
〉
−
√〈

U ′U ′⊤,M
〉∣∣∣∣ ≤ σmax(M)√

σmin(M)
∥U − U ′∥F ∀U,U ′ ∈ M, (11)

where σmax(M) and σmin(M) denote the maximum and minimum eigenvalues of the matrix M .

Proof of Lemma A.1. For inequality (10),∣∣〈UU⊤,M
〉
−
〈
U ′U ′⊤,M

〉∣∣ ≤ ∣∣〈UU⊤,M
〉
−
〈
UU ′⊤,M

〉∣∣+ ∣∣〈UU ′⊤,M
〉
−
〈
U ′U ′⊤,M

〉∣∣
≤
∣∣〈U,M(U − U ′)

〉∣∣+ ∣∣〈U ′,M(U − U ′)
〉∣∣

≤ ∥U∥F ∥M(U − U ′)∥F + ∥U ′∥F ∥M(U − U ′)∥F
= 2

√
d− kσmax∥U − U ′∥F .

For inequality (11), we first note that the function x 7→
√
x is 1/(2

√
xmin)-Lipschitz on [xmin,+∞)

and that 〈
UU⊤,M

〉
≥ (d− k)σmin(M) ∀U ∈ M.

Therefore,∣∣∣∣√〈UU⊤,M
〉
−
√〈

U ′U ′⊤,M
〉∣∣∣∣ ≤ 1

2
√

(d− k)σmin(M)

∣∣〈UU⊤,M
〉
−
〈
U ′U ′⊤,M

〉∣∣
≤ σmax(M)√

σmin(M)
∥U − U ′∥F ,

where the last inequality follows from (10). This completes the proof.

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Let U , U ′ ∈ M be two arbitrary points. We have

|F (U)− F (U ′)|
= |max {F0(U), F1(U)} −max {F0(U

′), F1(U
′)}|

≤ max
a∈{0,1}

|Fa(U)− Fa(U
′)|

≤ max
a∈{0,1}

max

θa
σmax(M̂a)√
σmin(M̂a)

, ϑ1−a
σmax(M̂1−a)√
σmin(M̂1−a)

, 2
√
d− kσmax(Ca)

 ∥U − U ′∥F ,

where the last inequality follows from the definition of Fa and Lemma A.1. This completes the
proof.

Proof of Theorem 4.3. The proof follows from the fact that F is convex on the Euclidean space
Rd×(d−k), Lemma 4.2 and Li et al. (2019, Theorem 2) (and the remarks following it).
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B INFORMATION ON DATASETS

Table 2: Number of observations N and dimensions d of various UIC datasets

Default Credit Biodeg E. Coli Energy German Credit Image Letter
N 30000 1055 333 768 1000 660 20000
d 22 40 7 8 48 18 16

Magic Parkinsons SkillCraft Statlog Steel Taiwan Credit Wine Quality
N 19020 5875 3337 3071 1941 29623 6497
d 10 20 17 36 24 22 11

C ADDITIONAL RESULTS

C.1 DETAIL PERFORMANCES

Table 3 shows the performances of four examined methods with two criteria ABDiff. and ARE.. It
is clear that our method achieves the best results over all 14 datasets w.r.t ABDiff., and 7 datasets
on ARE., which is equal to the number of datasets FairPCA out-perform others.

Table 4 complements Table 1 from the main text, from which we can see that two versions of CFPCA
out-perform others over all datasets w.r.t. △FLin, which is the criteria they optimize for.

Table 3: In-sample performance over two criteria

RFPCA FairPCA CFPCA-Mean Con. CFPCA - Both Con.
Dataset ABDiff. ARE. ABDiff. ARE. ABDiff. ARE. ABDiff. ARE.

Default Credit 0.9457 9.9072 1.5821 9.9049 0.9949 10.5164 3.2827 21.4523
Biodeg 9.4093 23.1555 14.2587 23.8227 15.5545 26.6540 24.8706 39.8737
E. Coli 0.5678 1.4804 0.9191 2.0840 0.9539 2.8360 4.5225 5.2155
Energy 0.0094 0.2295 0.0153 0.2273 0.2658 2.7893 0.2136 7.8768

German Credit 1.6265 40.1512 2.9824 40.3393 2.6109 40.1860 2.8741 47.1006
Image 0.1320 5.0924 0.7941 9.0437 0.6910 13.4491 3.0118 18.0000
Letter 0.1121 7.4088 1.2560 7.4375 0.4572 8.7764 0.5301 15.2234
Magic 1.7405 3.8766 2.8679 3.3500 5.5405 4.1938 8.7963 8.9695

Parkinsons 0.1238 5.0471 0.6702 4.8760 3.9470 5.9379 17.8122 19.9788
SkillCraft 0.4231 8.1569 0.5576 8.1096 0.7156 9.7755 0.9334 15.8245

Statlog 0.1972 3.0588 0.3315 7.9980 0.3857 10.9358 13.0725 35.9214
Steel 0.6943 11.0396 1.8015 10.7653 2.8933 14.5680 1.9322 23.9906

Taiwan Credit 1.1516 10.5136 1.3362 10.4478 1.3158 12.5867 2.2720 21.4365
Wine Quality 0.1125 4.1491 0.1705 5.8999 1.1359 5.9117 2.5852 9.8959

Table 4: Out-of-sample performance over △FLin

RFPCA FairPCA CFPCA-Mean Con. CFPCA - Both Con.
Default Credit 0.1596 0.2236 0.0574 0.0413

Biodeg 0.4892 0.4759 0.2014 0.1371
E. Coli 0.8556 0.7444 0.4455 0.2532
Energy 0.0580 0.0554 0.0502 0.0736

German Credit 0.1997 0.1737 0.1408 0.1093
Image 0.9996 0.9498 0.1874 0.2013
Letter 0.0954 0.0942 0.0556 0.0455
Magic 0.2195 0.2531 0.1561 0.0882

Parkinson’s 0.1459 0.1061 0.1805 0.0480
SkillCraft 0.1126 0.1141 0.0721 0.0742

Statlog 0.9804 0.6309 0.1359 0.0669
Steel 0.2288 0.2240 0.1418 0.0875

Taiwan Credit 0.0604 0.0535 0.0391 0.0370
Wine Quality 0.9699 0.4639 0.2192 0.0817
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C.2 VISUALIZATION

C.2.1 PARETO CURVES

Figure 4: Pareto curves on Biodeg
dataset (all data) with 3 principal components

Figure 5: Pareto curves on German Credit
dataset (all data) with 3 principal components
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C.2.2 PERFORMANCE WITH DIFFERENT PRINCIPAL COMPONENTS

Figure 6: Subgroup average error
with different k on Default Credit dataset

Figure 7: Subgroup average error
with different k on Default Credit dataset

Figure 8: Subgroup average error
with different k on E. Coli dataset

Figure 9: Subgroup average error
with different k on E. Coli dataset
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Figure 10: Subgroup average error
with different k on Magic dataset

Figure 11: Subgroup average error
with different k on Magic dataset

Figure 12: Subgroup average error
with different k on Steel dataset

Figure 13: Subgroup average error
with different k on Steel dataset
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Figure 14: Subgroup average error
with different k on Wine Quality dataset

Figure 15: Subgroup average error
with different k on Wine Quality dataset
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